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Abstract The increasing need for accurate bathymet-

ric mapping is essential for a plethora of offshore activ-

ities. Even though aerial image datasets through Struc-

ture from Motion (SfM) and Multi-View Stereo (MVS)

techniques can provide a low-cost alternative compared

to LiDAR and SONAR, offering additionally, impor-

tant visual information, water refraction poses signif-

icant obstacles in delivering accurate bathymetry. In

this article, the generation of manned and unmanned

airborne synthetic datasets of dry and water covered

areas is presented. These data are used to train mod-

els for correcting the geometric effects of refraction on

real world image-based point clouds and aerial images.

Based on a thorough evaluation, important improve-

ments are presented, indicating the increased accuracy

and the reduced noise in the point clouds of the derived

bathymetric products, meeting also the International

Hydrographic Organization’s (IHO) standards.
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1 Introduction

Accurate and reliable bathymetric mapping is a key el-

ement for offshore activities, coastal engineering appli-

cations, study of sedimentary processes, hydrographic

surveying, as well as archaeological mapping and biolog-

ical research. With the advent of modern remote sens-

ing techniques (e.g., seismic reflection profiling, aerial

imagery, satellites, LiDAR and SONAR), researchers

have now gained the ability to effectively interpret and

map large portions of the dynamically changing shallow

and deep coastal environments along continental shelf

margins.

When it comes to shallow waters, SfM and MVS

techniques can provide a low-cost alternative compared

to other methods such as aircraft-borne and unmanned

aerial vehicle (UAV)-borne LiDAR (Mandlburger et al.,

2020) and shipborne multibeam echosounders, offering

as well, important visual information. However, refrac-

tion seems to be the main factor adversely affecting the

geometry and the radiometry of the imagery and conse-

quently of the products of through-water image-based

3D reconstruction methods by delivering erroneous (ap-

parent) depths.

The work presented in this article describes the gen-

eration of synthetic Digital Terrain Models (DTMs) and

aerial imagery depicting dry and water covered areas.

The produced synthetic data enabled us to investigate

additional error sources not related to refraction, in

a controlled environment. Most importantly, the syn-

thetic data are used for training unbiased linear Sup-

port Vector Regression (SVR) models, facilitating the

validation in real world cases and delivering valuable

results. To train the SVR models and correct the ap-

parent depths (Z0), the method presented in Agrafiotis
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et al. (2019a,b) is followed, which in this article, will be

referred to as Method 1.

The rest of the article is organized as follows: Sub-

section 1.1 reports the related work while Subsection

1.2 the contribution of the article. Section 2 describes

the process for generating the synthetic DTMs and im-

ages. Section 3 presents the investigation of additional

errors performed, not related to refraction, while Sec-

tion 4 the learning process. In Section 5, the training,

validation, and testing of the SVR models of Method 1

is performed using the synthetic data and the results are

evaluated. Following, Section 6 describes the implemen-

tation of the trained SVR models directly and through

the method presented in Agrafiotis et al. (2020), which

hereafter will be referred to as Method 2. Both meth-

ods are applied on four different real-world test areas,

indicating the increased bathymetric accuracy achieved

when the models trained on the synthetic data are used.

Section 7 is the discussion and Section 8 concludes the

article.

1.1 Related work

1.1.1 Refraction Correction

Refraction effect has driven scholars to suggest several

correction models for two-media photogrammetry, most

of which are dedicated to specific applications. Two-

media photogrammetry is divided into through-water

and in-water photogrammetry. The through-water term

is used when the camera is above the water surface

and the object is underwater, hence part of the ray

is traveling through air and part of it through water.

It is most commonly used in aerial photogrammetry

(Mulsow, 2010; Dietrich, 2017; Skarlatos and Agrafio-

tis, 2018; Mandlburger, 2018, 2019; Agrafiotis et al.,

2019a,b, 2020; Mulsow et al., 2020) and satellite pho-

togrammetry (Cao et al., 2019, 2020) for small and large

scale seabed mapping surveys or in close range applica-

tions (Butler et al., 2002; Georgopoulos and Agrafiotis,

2012). The in-water term is used when both camera and

object are in the water (Menna et al., 2018; Agrafiotis

et al., 2018), however this is not the case here.

In the literature, three main approaches can be found

for correcting refraction in through-water photogram-

metry: analytical, image-based, and machine learning-

based. The first is based on the modification of the

collinearity equation (Fryer, 1983; Wang, 1990; Shan,

1994; Butler et al., 2002; Maas, 2015; Wimmer, 2016;

Dietrich, 2017), the second suggests the re-projection of

the original photo to correct the water refraction (Geor-

gopoulos and Agrafiotis, 2012; Skarlatos and Agrafiotis,

2018; Agrafiotis et al., 2020) while the third and most

recent one depends on machine learning models that

learn the underestimation of depths and predict the cor-

rect depth knowing only the apparent one (Agrafiotis

et al., 2019a,b, 2020). Other methods that do not fall

into the above categories, are multiplying the appar-

ent depth with a constant number, which in most of

the cases is the refraction index of the water (Wood-

get et al., 2015; Chirayath and Li, 2019). As shown

in Agrafiotis (2020), the use of this form of correction

might be acceptable in the very shallow waters, how-

ever, remarkable errors are expected after 2-3 m depth.

A very recent and in-depth presentation of the cur-

rent state of the art methods in through-water pho-

togrammetry and Satellite Derived Bathymetry (SDB)

can be found in Agrafiotis (2020).

1.1.2 Synthetic Images

According to Luhmann (2016), artificial images (or syn-

thetic images called in this article) can be generated

if interior orientation and exterior orientation param-

eters, a Digital Surface Model (DSM) and a texture

image are given. By resampling through object space,

the image is filled with color values. These images can

then be used to create reference or error-free images of

which all parameters are known.

Nowadays, synthetic images are widely used in com-

puter vision and machine learning community for facil-

itating the error-free training, validation, and testing

of complex models requiring many data that are diffi-

cult and sometimes expensive to find (Peng et al., 2015;

Richardson et al., 2016; Ros et al., 2016; Shrivastava

et al., 2017; Sankaranarayanan et al., 2018; Saleh et al.,

2018; Barbosa et al., 2018; Hinterstoisser et al., 2018).

The use of synthetic images in the photogrammetric ap-

plications is quite adopted too, especially for some spe-

cific applications and error investigation (Skarlatos and

Georgopoulos, 2006; Li et al., 2011; Luhmann, 2016;

Sun et al., 2016; Kahmen et al., 2019, 2020).

1.2 Contribution

In this work, the generation of synthetic DTMs and

aerial images picturing clear and calm waters is per-

formed in order to: (a) discover additional error sources

in the process, not related to refraction and (b) use the

synthetic data for training unbiased SVR models follow-

ing Method 1. The latter one will facilitate the valida-

tion of those models in real world cases, demonstrating

a noticeable increase in accuracy achieved by the al-

ready published methods in Agrafiotis et al. (2019a,b,

2020) where the SVR models are trained with real world

data only.
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To this end, a periodic mathematical function is

used to form two different DTMs, which are coloured

by a suitable texture pattern, generating eight syn-

thetic aerial datasets; for the four of them, refraction

is added on the imagery while for the remaining four,

images without refraction are created, allowing for the

investigation of additional error sources in the process.

Then, by using these data, SfM-MVS processes are per-

formed and the point clouds created using the refracted

imagery are corrected by the refraction effects using

Method 1. Consequently, the corrected point clouds are

used for correcting the refracted imagery following Method

2. Results are compared with the ones delivered using

the SVR models trained on real-world datasets as well

as three other state of the art methods.

The advantage of the synthetic data is the accuracy

and reliability of the depth information and the exact

knowledge of exterior and interior orientations of the

cameras used. Moreover, when it comes to seabed imag-

ing, errors and limitations in image matching caused by

the visibility restrictions due to the depth, especially in

depths more than 10-15 m (Agrafiotis, 2020), and er-

rors introduced by the wavy surface are excluded, so

that the only unknown is the refraction effect. Once the

synthetic environment is created, it is fast and cheap to

produce as much data as needed for training a model.

Additionally, synthetic data can have perfectly accurate

labels, including labeling that may be very expensive or

impossible to obtain by hand. By using a mathematical

function to generate and describe the DTMs, incom-

patibilities and errors that might be transferred to the

solution by the true depth data are avoided, leading

to independent and objective results. This furthermore

allows the generation of high quality training data.

2 Synthetic Data Generation

In this section, the synthetic data generation process is

described, given that the interior and exterior orienta-

tions of the cameras and a realistic texture are a priori

available. Considering this, images depicting the syn-

thetic seabed are generated with and without the pres-

ence of water. Generating synthetic images acquired by

different heights, different flight paths, different cam-

eras, different platforms (UAV and aircraft) and over

different DTMs is also considered of high importance.

Radial and tangential distortions are not added to the

images since they would insert undesirable additional

errors in the models.

2.1 DTM Generation

A continuous function Z = f (X, Y ) is adopted in or-

der to know the exact elevation for each horizontal po-

sition X, Y of the DTM. This way, when comparing

the true and the apparent depths, the interpolation be-

tween discrete points is avoided, since it would intro-

duce additional errors in the process, not related to the

refraction effect. For our simulation, we use two syn-

thetic DTMs: (a) DTM1 describes in a realistic way a

typical seabed anaglyph in shallow water areas, and (b)

DTM2 is characterized by changes in the elevation and

more intense slopes. In Fig. 1 the DTM areas captured

by the simulated UAV flights are shown.

(a)

(b)

Fig. 1: The two different synthetically generated DTMs.

X,Y, Z are in meters. (a) DTM1 and (b) DTM2

Although DTM2 does not represent a realistic seabed

anaglyph, this type of complex seabed model is im-

portant for investigating the noise in the SfM-MVS

elevations, especially when refraction is added. More-

over, this way the robustness or potential limitations of
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Method 1 can be discovered. Equation 1 describes the

function Z = f (X, Y ) adopted for both DTMs:

Z(X,Y ) = (Z0 + (X −X0) × inc+

(Y − Y0) × inc+ ap× sin((X −X0) × ep)−
ap× sin((Y + Y0) × ep) − as× sin((X −X0)

×es) − as× sin((Y + Y0) × es)

(1)

where for DTM1: X0 = 9312.94, Y0 = 10729.49, Z0 =

−19, the inclination inc = 0.005, the amplitude param-

eters of the two sinusoidal functions ap = 7 and as =

0.5, and the frequency parameters ep = 0.00448785722

and es = 0.0314150006. For DTM2, all values remained

the same, except of ap and as that are altered to 6 and

3 respectively.

For the UAV-borne datasets (see 2.2), an area of

400 x 400 m for both the DTMs is covered by the im-

agery. For this area, the maximum elevation of DTM1

is -0.13 m (Fig. 1a) while the maximum elevation of

DTM2 is 2.65 m (Fig. 1b). Their minimum elevation

(or maximum depth) is -18.57 m and -19.05 m respec-

tively. For the aircraft-borne datasets (see 2.2), a larger

area of 1332 x 1332 m of the DTM2 is covered by the

imagery. The maximum elevation of DTM2 in this area

is 4.95 m and the minimum elevation is -40 m.

To texture both DTMs, affine transformations are

applied on an already available typical texture of a

seabed area in the Mediterranean Sea, depicting rock

formations, sandy areas and seagrass covered areas, in

order to cover the whole area of the DTM. For the UAV-

borne datasets, the Ground Sampling Distance (GSD)

of the generated texture is set to 0.03 m x 0.03 m while

for the aircraft-borne dataset the GSD of the gener-

ated texture is set to 0.10 m x 0.10 m, facilitating the

synthetic imagery generation in adequate and realistic

resolution later. It is considered that the used texture

does not affect the SfM-MVS elevations, however, it is a

factor that could affect the generated noise in the point

clouds.

2.2 Synthetic Image Generation and Processing

For achieving the goals of this work, it is necessary

to generate separate blocks of synthetic images hav-

ing exactly the same exterior orientations and depict-

ing the seabed areas with and without the presence of

the water. As such, eight synthetic datasets are created

for four representative flying heights; for DTM1, two

flights (with and without water) are simulated at a fly-

ing height of 150 m and two flights are simulated at a

flying height of 200 m, for DTM2 two flights are sim-

ulated at a flying height of 200 m and two flights are

simulated at a flying height of 2800 m.

For generating the synthetic imagery, the already

mentioned texture is treated as an orthoimage. As such,

the orthoimage is back projected to create perspective

images from the specified camera positions, featuring

the specified interior orientation. For the generation

of the non-refracted images, the straight-forward ap-

proach presented in Skarlatos and Georgopoulos (2006)

is implemented, expanding also to generate RGB im-

ages. For introducing the refraction effect on the im-

agery, the inverse approach of the image refraction cor-

rection method (Method 2) described in (Skarlatos and

Agrafiotis, 2018; Agrafiotis et al., 2020) is followed. The

air-water interface is considered flat at 0 m elevation.

Regarding the camera parameters, for the images

depicting the textured artificial surface described by

DTM1, where only UAV-borne images are simulated,

a focal length of 3.60 mm with pixel size of 1.55µm and

a typical image size of 4000 x 3000 pixels is selected.

For the UAV-borne images over DTM2, a focal length

of 4.50 mm is used, having the same pixel size and the

same image size as the images of DTM1, representing a

vast majority of the commercial light weight RGB sen-

sors exploited in low altitude UAV image-based map-

ping (i.e. the DJI FC330, the GoPro Hero 4 etc.).

For the aircraft-borne images over DTM2, a focal

length of 100.5 mm is selected with pixel size of 4µm

and an image size of 26460 x 17004 pixels, representing

an airborne sensor for large scale image-based mapping

(i.e. Vexcel’s UltraCam Eagle M3 etc.).

Fig. 2 depicts an example of a generated synthetic

image without refraction for the 150 m [DTM1] dataset

in the left column of row I, while in the right column,

the same image with refraction is shown. The exam-

ple images of the 200 m [DTM2] and 2800 m [DTM2]

datasets are shown in rows II and III respectively. In

the same figure, it can be noticed that the images which

are affected by refraction are slightly magnified, depict-

ing a smaller area on the seabed. This is in line with the

results presented in Agrafiotis and Georgopoulos (2015)

where according to the authors, when water is added in

the light ray path, the effective camera constant is al-

ways larger than the camera constant in air, leading to

a reduction of the field of view.

Table 1 presents the details of the four non-refracted

datasets and of the subsequent SfM-MVS processing in

Agisoft Metashape software. This processing is neces-

sary for the generation of the point clouds to be used

in Method 1. The same details apply for the remain-

ing four refracted datasets, except of the Root Mean

Square Errors (RMSEs), which for those variants are

in parentheses. It is noted that for the refracted datasets,

the RMSEs of the camera positions exceed the ones re-

sulted from the non-refracted ones and that as an effect
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of refraction on the images, overlapping is expected to

be slightly smaller.

Non-refracted Refracted
150 m [DTM1]

200 m [DTM2]

2800 m [DTM2]

Fig. 2: Indicative synthetic imagery without refraction

(left column) and with refraction (right column). Both

image variants share exactly the same exterior orienta-

tion.

3 Investigating additional errors not related to

refraction

To estimate the amount and the type (random or sys-

tematic) of the errors in depth determination that are

not related to the trained SVR models but are intro-

duced by the SfM-MVS processing and possibly by the

synthetic data generation pipeline, the following com-

parison is performed: The elevations of the X, Y points

generated from these processes using the non-refracted

synthetic datasets, are compared with the respective

true elevations calculated using Equation 1 for exactly

the same X, Y points.

Fig. 3 serves as an explanatory figure of the 2D his-

tograms that are presented next in the article. There,

the 2D histogram of the comparisons performed for the

150 m [DTM1][n-r] synthetic dataset, which juxtaposes

the elevation and the differences between the true and

the calculated elevations, is accompanied with two 1D

histograms; the one on top is the histogram of the ele-

vation differences of -6 m (cross section of the 2D his-

togram) while the one on the right is the elevation his-

togram of a difference of 0.055 m (longitudinal section

of the 2D histogram), which is the average elevation

difference for this dataset.

Fig. 3: An indicative 2D histogram of the differences

between the true (Z) and the SfM-MVS calculated el-

evations using the non-refracted imagery. Traces of the

cross and longitudinal sections are in black.

Regarding the histogram of the elevations, it is di-

rectly related to the DTM used for the synthetic data

generation, and thus, for the different DTMs it would

be different. On the contrary, the histogram of the dif-

ferences is approximated by a higher-order Gaussian or

super-Gaussian distribution for all the tests performed

(see Fig. 4). Results of the comparisons are presented

in Table 2 while the histograms of the calculated differ-

ences in relation to the true elevation are illustrated in

Fig. 4.

Fig. 4, depicts the histograms of the differences be-

tween the true and the SfM-MVS calculated elevations

using the non-refracted imagery, for all the four non-

refracted datasets. There, it can be noticed that SfM-

MVS processing, is underestimating the elevations (x̄

is positive). This systematic effect is also reported in

Smith and Vericat (2015) and Nesbit and Hugenholtz

(2019). These systematic errors, are accompanied by

larger differences that are scattered almost equally on

either side of the mean value, forming the higher-order

Gaussian distribution already reported. These larger

differences, that according to the literature (Smith and

Vericat, 2015; Nesbit and Hugenholtz, 2019) are present
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Dataset
150m

[DTM1] [n-r]
200m

[DTM1] [n-r]
200m

[DTM2] [n-r]
2800m

[DTM2] [n-r]

# Images (# strips x # images ) 24 (4 x 6) 12 (4 x 3) 16 (4 x 4) 12 (4 x 3)
Avg. B/H ratio along strip (n-r) 0.45 0.45 0.31 0.21
Avg B/H ratio across strip (n-r) 0.52 0.52 0.69 0.32
Along strip overlap (n-r) 65% 65% 70% 70%
Across strip overlap (n-r) 70% 70% 50% 70%
Image ground footprint[m] (n-r) 260 x 195 344 x 258 277 x 208 2949 x 1887
GSD [m] (n-r) 0.065 0.086 0.069 0.111
RMSEX [m] 0.005 (0.006) 0.002 (0.004) 0.004 (0.012) 0.006 (0.008)
RMSEY [m] 0.002 (0.014) 0.001 (0.014) 0.002 (0.063) 0.004 (0.016)
RMSEZ [m] 0.001 (0.015) 0.001 (0.007) 0.001 (0.016) 0.001 (0.029)
Pixel size [µm] 1.56 1.56 1.56 4
Camera constant c [mm] (n-r) 3.61 3.61 4.5 100.5

Table 1: Details about the simulated aerial campaigns, the derived datasets and relative information. n-r stands

for non-refracted and B/H for Baseline to Height. RMSEs are for camera position and RMSEs in parenthesis

stand for the refracted datasets.

(a) (b) (c) (d)

Fig. 4: The 2D histograms of the differences between the true elevations and: (a) the SfM-MVS calculated elevations

using the imagery of the 150 m [DTM1][n-r] dataset, (b) the 200 m [DTM1][n-r] dataset, (c) the 200 m [DTM2][n-r]

dataset, and (d) the 2800 m [DTM2][n-r] dataset.

Dataset
[n-r]

x̄ [m] σ [m]
RMSEZ

[m]

Expected RMSEZ

according to
Smith and Vericat (2015) [m]

Evaluated Points

150 m [DTM1] 0.055 0.043 0.070 0.23 2.507.667
200 m [DTM1] 0.069 0.030 0.078 0.31 5.789.766
200 m [DTM2] 0.071 0.047 0.085 0.31 2.162.523
2800 m [DTM2] 0.121 0.110 0.164 not applicable 4.398.822

Table 2: Differences between the SfM-MVS and the true elevations of the point clouds generated using the non-

refracted datasets. x̄ is the average distance of the point cloud from the true elevations and σ the standard

deviation.

in most of the nadir image blocks, are justifying the

calculated standard deviations of Table 2 and they are

indicating the noise in the elevations of the point cloud,

introduced mainly by the SfM-MVS process.

It is expected that this noise will be more intense

when refraction is added on the images, primarily due

to the erroneous key point matching of points at the

edges of the images which are severely affected by the

larger incidence angles and secondarily by the usage of

RGB imagery, since the amount of refraction is different

for each wavelength (Agrafiotis et al., 2020; Agrafiotis,

2020).

4 Learning from Synthetic Data

This section presents the methodology for learning from

the generated synthetic datasets. Initially, the addi-

tional errors in the point cloud generation process, not

related to image ray refraction are investigated. Conse-

quently, this section discusses the training, validation,

and testing schemes using the synthetic data.
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(a) (b) (c) (d)

Fig. 5: The 2D histograms of the juxtaposed real and apparent depths and the respective point densities for (a)

150 m [DTM1], (b) 200 m [DTM1], (c) 200 m [DTM2] and (d) 2800 m [DTM2] refracted datasets.

4.1 Training, Validation, and Testing Methodology

Having investigated the additional, non-refraction re-

lated errors introduced in the point cloud generation

process, Method 1 is implemented to process the al-

ready described synthetic datasets being affected by the

refraction. In this method, SVR models are trained us-

ing the apparent (from SfM-MVS) and the true depths

of point clouds, facilitating the prediction of the cor-

rect depths of unseen data. In order to demonstrate

the potential for applications over different areas and

shallow waters, training and cross-testing is performed

in different synthetic sites, including also the synthetic

aircraft-borne imagery. As such, a model trained using

the apparent and true depths of the 3D point cloud of

a synthetic test site is tested by predicting the correct

depths on the rest of the synthetic test sites, where the

true depths are also available but used only for eval-

uation. Later, in Section 6, these trained models will

be used to predict the correct depths over real-world

datasets as well delivering important results.

For the experiments performed here, four different

sets are formed for training, validation, and testing.

These sets are depicted in Fig. 5. There, the 2D his-

tograms of the juxtaposed true and apparent elevations

and the respective point densities are presented, show-

ing also their clear linear relationship.

4.1.1 Training and Validation Scheme

SVR has a great potential to deliver robust models,

even using sparse data for training (Bishop, 2006; Awad

and Khanna, 2015; Vapnik and Chervonenkis, 2015).

Due to the large size of the available data for correla-

tion in all the four synthetic datasets, the use of per-

centages of the total data for training is investigated.

To that direction, models are trained using 80%, 30%

and 5% of the data. Results suggested that for all three

percentages, models with comparable accuracy are de-

rived. However, expectedly training on 80% of the data

required much more computational resources compared

to 30% and 5% of the data. Considering this, training

is performed using 5% of the available points.

This way, samples are first shuffled and then split

into 5%-95% blocks. Splits are created by preserving

the same percentage for each group of ordered indexes

in the complete set (Pedregosa et al., 2011), ensuring a

representation of all depths. For all four datasets, 5%

of the points are used for training and the remaining

95% for validation.

4.1.2 Testing Scheme

Testing is performed only on unseen data i.e. different

datasets. Using the model trained on the 5% of the

150 m [DTM1] dataset, the corrected depth over the

100% of the 200 m [DTM1], the 200 m [DTM2], and the

2800 m [DTM2] datasets is predicted. The respective

testing procedure is repeated for models trained on the

remaining three datasets.

5 Experimental Results and Validation on the

Synthetic datasets

In this section, the results of the training, validation and

testing of the synthetic data processed by Method 1 are

presented, delivering valuable additional results. These

trained models are used for correcting the geometric

effects of refraction on real world image-based point

clouds later in Section 6.

5.1 Training Results

To facilitate the visual comparison between the trained

models, Fig. 6 demonstrates zoomed details of the four

models predicting the depths of the 150 m [DTM1] dataset.

In this figure, the model trained on the 150 m [DTM1]

dataset is also plotted to show the clear overlap with

the remaining two models trained on the UAV-borne

datasets.

It is obvious that the models trained on the UAV-

borne datasets are overlapping across the entire range of
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(a)

(b)

(c)

Fig. 6: Zoomed details of the juxtaposed true and ap-

parent depths of the 150 m [DTM1] dataset, the point

densities, and the respective linear SVR models.

the 2D histogram, although they are trained in datasets

having different flying heights, different interior and ex-

terior orientations, different B/H ratios, and different

seabed anaglyph. Slight differences are observed be-

tween the UAV and the aircraft-borne model, being in

the range of 0.002-0.031 m in the deeper areas (Fig. 6a).

This deviation is less than the half of the GSD size of

the imagery used. On the contrary, in the shallower

areas of the 150 m [DTM1] dataset (Fig. 6b, c), this de-

viation is slightly smaller than the pixel size, i.e. 0.07-

0.09 m. All the models, especially the ones trained on

the UAV-borne datasets, succeed in following the Z-Z0

distribution of the large percentage of the points (see

also Fig. 5). Compared with the models trained on real

world datasets presented in Agrafiotis et al. (2019b,a),

these results are very promising regarding the general-

ization applicability of the models.

In Fig. 6, a number of outlier points appear to lie

away from the predicted models (points in dark blue

that are indicatively marked in Fig. 6c with the red el-

lipse). However, as can be seen in Figure 7, these points

are less than 5% of the total juxtaposed points and they

affect the final accuracy of the results only marginally.

In the next paragraphs, the above models are evalu-

ated in terms of accuracy highlighting the high perfor-

mance of this proposed method, discussing also issues

and differences observed between the predicted and true

depths calculated by Equation 1.

5.1.1 Validation and Testing Results

As a first step towards the evaluation of the trained

models and their predicted depths, the amount of the

errors that is introduced by the refraction effect is demon-

strated by comparing the initial (uncorrected or appar-

ent) depths (Z0) of the synthetic datasets with the true

depths (Z) calculated by the Z function (Equation 1).

In Fig. 7, it can be clearly observed that the differences

between the true depths and the uncorrected depths are

increasing proportionally to the depth, reaching a mean

difference of 5.5 m at the depth of 15 m. This means
that the mean difference is in the order of 36.7% of

the true depth. In all the cases demonstrated in Fig.

7, the average value of the differences is significant, be-

ing between 2.48 m to 2.96 m with a standard deviation

(1σ) of 1.47 m and 1.54 m, and RMSEsZ of 2.87 m and

3.34 m, respectively. For the 2800 m [DTM2] synthetic

dataset, these values are larger, confirming that refrac-

tion cannot be neglected, even when images are cap-

tured from higher altitudes (Skarlatos and Agrafiotis,

2018).

As can be observed in the same figure, the majority

of the differences in all of the histograms are far from

the red dashed lines. These lines, also appear in some of

the next figures represent the maximum allowable total

vertical uncertainty (TVU) dictated by IHO’s Special

Order (S44) (IHO, 2020). To compute the maximum

TVU at the 95% confidence level, the following formula

is used:

TV Umax(d) =
√
a2 + (b× d)2 (2)
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150 m [DTM1] 200 m [DTM1] 200 m [DTM2] 2800 m [DTM2]
All the juxtaposed points

95.4% of the juxtaposed points

Fig. 7: The 2D histograms of the differences between the true and the uncorrected SfM-MVS detphs for the 150 m

[DTM1] dataset (column I), the 200 m [DTM1] dataset (column II), the 200 m [DTM2] dataset (column III) and

the 2800 m [DTM2] dataset (column IV).

where for the Exclusive Order, a=0.15 m, b=0.0075,

the Special Order, a=0.25 m, b=0.0075, the Order 1a,

a=0.50 m, b=0.013, while for the Order 2, a=1 m, b=0.023,

and d is the depth. The 95% confidence level for depths

is defined as 1.96×σ.

Fig. 8 presents the 2D histograms of the differences

between the true depths and the corrected depths pro-

duced from the predicted model trained on each syn-

thetic dataset. In the odd rows of Fig. 8, the 2D his-

tograms of the juxtaposed depths and differences of the

synthetic datasets and the respective point densities of

100% of the points are presented while in the even rows

of Fig. 8, the 2D histograms of the 95.4% of the jux-

taposed points are presented. It is observed that the

amount of points that surround the core of the 2D his-

tograms and exceed the maximum TVU of the Spe-

cial Order (IHO, 2020) is insignificant, representing less

than the 4.6% of the total points.

Contrary to Fig. 4, for all the cases presented in Fig.

8, the majority of the points present mean differences

close to 0 m. These results, confirm that, as anticipated

previously, the adopted method for correcting the geo-

metric effects of refraction based on trained SVR mod-

els, can absorb the systematic effects oberved in the

elevations of the non-refracted datasets (Table 2). On

the contrary, the noise in the elevations of the point

clouds, introduced mainly by the SfM-MVS process is

still present in Fig. 8 and, as expected, is more intense

due to the refraction effect (Agrafiotis, 2020). However,

this noise is limited to less than the 4.6% of the com-

pared points.

A further important observation on the results de-

rived from Fig. 8 is that in some of the 2D histograms,

an inclination of the high density core is detected, de-

viating from the normal. This inclination seems to be

directly related to the depth. This effect is more evi-

dent in the column IV, where the models trained using

the 2800 m [DTM2] are used and evaluated. This is also

the case when testing the UAV models on the 2800 m

[DTM2] dataset (last two rows in Fig. 8). However, for

the majority of the compared points, this deviation is

no more than 0.09 m at the depth of 0 and 30 m, as also

shown in Fig 6. This effect is systematically attributed

to the 2800 m [DTM2] dataset, indicated by a slight

rotation around the Z axis of the figures between the

models at the depth of 20 m.

To explain this indicated systematic depth-dependent

effect, experiments including more high-altitude aircraft-

borne datasets should be performed. However, a deeper

look at the SfM processing of the images depicting both

dry and water-covered areas should provide a prelimi-

nary insight into the causes.

Indeed, in both synthetic and real-world cases, it

is observed that when low-altitude UAV images are

used, image matching is heavily dependent on the per-

centages of the depicted emerged and submerged ar-

eas. Those images are mainly being matched and con-

sequently aligned using the key-points found in the pre-

vailing area, dry or water-covered. Candidate matches

in this area are dominating the epipolar geometry, which

slightly differs depending on whether the area is sub-

merged or not, due to the effects of refraction. This way,

matches that are not following the epipolar constraint

of the prevailing area are filtered out.

Due to the lower altitude of the UAV, incidence

angles are larger, compared to the higher-altitude im-
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Training site
150 m[DTM1] 200 m[DTM1] 200 m [DTM2] 2800 m[DTM2]

Testing on 150 m [DTM1] - Plotting the 100% of the tested points

Testing on 150 m [DTM1] - Plotting the 95.4% of the tested points

Testing on 200 m [DTM1] - Plotting the 100% of the tested points

Testing on 200 m [DTM1] - Plotting the 95.4% of the tested points

Testing on 200 m [DTM2] - Plotting the 100% of the tested points

Testing on 200 m [DTM2] - Plotting the 95.4% of the tested points
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Testing on 2800 m [DTM2] - Plotting the 100% of the tested points

Testing on 2800 m [DTM2] - Plotting the 95.4% of the tested points

Fig. 8: The 2D histograms of the differences between the true depths and the corrected depths after the application

of Method 1, in relation to the real depth. The red dashed lines represent the maximum allowable TVU dictated

by the IHO’s Special Order (S44) (IHO, 2020).

Dataset
[5%]

Train.
points

R2 Eval.
Site
[95%]

Max /Min
depth

of test site

Eval.
points

Uncorrected data Corrected data

x
[m]

σ
[m]

RMSEZ

[m]
x

[m]
σ

[m]
RMSEZ

[m]

150 m
[DTM1]

129.552 0.9997
150 m

[DTM1]
18.7/0 2.461.488 2.48 1.47 2.88 0.01 0.07 0.07

150 m
[DTM1]

129.552 0.9993
200 m

[DTM1]
18.7/0 1.409.673 2.49 1.49 2.88 0 0.11 0.11

150 m
[DTM1]

129.552 0.9996
200 m

[DTM2]
19.05/0 2.097.713 2.96 1.54 3.34 -0.02 0.09 0.09

150 m
[DTM1]

129.552 0.9996
2800 m
[DTM2]

40/0 4.071.219 5.86 2.52 6.38 0.03 0.22 0.23

200m
[DTM1]

74.193 0.9997
150 m

[DTM1]
18.7/0 2.461.488 2.48 1.47 2.87 0.01 0.07 0.08

200 m
[DTM1]

74.193 0.9994
200 m

[DTM1]
18.7/0 1.409.673 2.49 1.49 2.88 0 0.11 0.11

200 m
[DTM1]

74.193 0.9996
200 m

[DTM2]
19.05/0 2.097.713 2.96 1.54 3.34 -0.01 0.09 0.09

200 m
[DTM1]

129.552 0.9996
2800 m
[DTM2]

40/0 4.071.219 5.86 2.52 6.38 0.03 0.21 0.23

200 m
[DTM2]

110.405 0.9996
200 m

[DTM2]
19.05/0 2.097.713 2.96 1.54 3.34 0 0.09 0.08

200 m
[DTM2]

110.405 0.9997
150 m

[DTM1]
18.7/0 2.097.713 2.48 1.47 2.87 0.03 0.07 0.11

200 m
[DTM2]

110.405 0.9994
200 m

[DTM1]
18.7/0 1.409.673 2.49 1.49 2.88 0.02 0.11 0.09

200 m
[DTM2]

129.552 0.9996
2800 m
[DTM2]

40/0 4.071.219 5.86 2.52 6.38 0.04 0.20 0.23

2800 m
[DTM2]

214.274 0.9996
2800 m
[DTM2]

40/0 4.071.219 5.86 2.52 6.38 0.01 0.19 0.20

2800 m
[DTM2]

214.274 0.9996
150 m

[DTM1]
18.7/0 2.461.488 2.48 1.47 2.87 -0.05 0.09 0.10

2800 m
[DTM2]

214.274 0.9996
200 m

[DTM1]
18.7/0 1.409.673 2.49 1.49 2.88 -0.03 0.11 0.12

2800 m
[DTM2]

214.274 0.9996
200 m

[DTM2]
19.05/0 2.097.713 2.96 1.54 3.34 -0.06 0.10 0.11

Table 3: Quantitative evaluation results. Comparing the results derived from all performed experiments.
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agery, intensifying the effect and consequently increas-

ing the differences between the calculated epipolar ge-

ometry of both the areas. Apparently, this is restricted

to a limited area of the image block, being parallel

to the coastline, and depicting the shallower areas of

the site. It leads to the generation of different appar-

ent depths depending on whether the images used are

matched using emerged or submerged key-points. Some-

times, these depths do not follow the strict linear model

that applies to the rest of the submerged areas of the

block, but they are subject to the flight plan and the

image overlap in this area. As a measure to mitigate

this problem, a cross hatch pattern of variable flying

altitudes is suggested in order to facilitate reliable and

evenly distributed matches.

However, this is not the case for the high-altitude

aircraft-borne imagery that covers larger portions of

emerged and submerged areas in the same image. There,

due to the higher altitude, smaller differences in epipo-

lar geometry are found and matches are kept for both

the areas. This difference in the SfM derivatives be-

tween the UAV and the aircraft-borne datasets results

in a slight differentiation of the trained models (see Fig.

6) leading to the discussed rotation. The application of

Method 2 presented in Agrafiotis et al. (2020) over-

comes the problem by correcting the imagery by the

refraction effect (see Fig. 9), facilitating the evenly dis-

tributed matches in both the emerged and submerged

areas of the corrected images. The effect of refraction

on the key-point matching on the deeper areas of the

block is discussed in Subsection 6.3.1.

Table 3 presents the results of each one of the 4

validation and 12 testing approaches. Both in Fig. 8

and Table 3, an impressive improvement in depth ac-

curacy is observed. More specifically, for all simulated

UAV synthetic datasets used, the initial depth devia-

tion being in the range of 2.48 m to 2.96 m is reduced

to the range of 0 m to 0.027 m, the standard deviation

of 1.47 m to 1.58 m is reduced to the range of 0.07 m

to 0.11 m, and the RMSEsZ decreased from initially

2.87 m to 3.34 m to 0.07 m to 0.11 m. When real datasets

are under testing, this deviation is expected to increase

in depths of more than 10 m, since errors and limitations

caused by the progressive, depth-related blurring would

be introduced (Agrafiotis, 2020). For the aircraft-borne

synthetic test sites, the statistical indexes are doubled,

as a result of the rotation reported previously and the

larger GSD size.

To categorize the results according to IHO’s S44

(IHO, 2020), the 95% TVU is calculated as 1.96×σ,

for all the tests performed. When the models trained

on the 200 m [DTM1] and 200 m [DTM2] datasets are

used to correct the depths of the 150 m [DTM1] dataset,

results are satisfying the TVU limits of the Exclusive

Order while for the remaining simulated UAV datasets,

the maximum TVU of the Special Order is met. It is

highlighted that the latter applies also for the models

trained on the 2800 m [DTM2] dataset when applied

on all the UAV datasets. However, when the models

trained on the UAV datasets are applied on the 2800 m

[DTM2] dataset, resulted accuracy is within the TVU of

Order 1a. Moreover, considering IHO’s white paper on

the regulations for international charts and charts spec-

ifications (IHO, 2019), when using the synthetic data,

the proposed method is qualified to the maximum Zone

of Confidence (ZOC) level A1, for which, the minimum

depth accuracy is calculated as 0.50+1%×d, where d is

again the depth.

It is also important to note that the large distances

between the point clouds observed in Fig. 7 disappeared.

This improvement is observed in every test performed,

proving that the trained SVR models on synthetic data

achieve a great reduction of the geometric effects caused

by the refraction to the bottom point clouds, and thus

successfully eliminate the errors in depth determina-

tion.

To compare the achieved results with the differences

found by the comparison between the uncorrected and

the true depths (Fig. 7), it is reminded that at the depth

of 15 m, the difference reaches the 5.5 m which relates to

36.7% of the depth. On the contrary, when comparing

the corrected depths resulted by the proposed method

with the true depths, differences at the depth of 15 m

are within the range of -0.20 m to 0.20 m. A majority

of the deviations even range from -0.05 m to 0.05 m, i.e.

corresponding to 1.33% and 0.33% respectively of the

true depth for all the tests performed.

An additional measure to evaluate the predicted

models used is the computation of fitting score R2,

which is defined as:

R2 = 1 −
∑

(Ztrue − Zpredicted)2∑
(Ztrue − Ztrue.mean)2

(3)

The best possible score is 1.0 and it may also be

negative (Pedregosa et al., 2011). Ztrue is the true value

of the depth of the points not used for training, while

Zpredicted is the predicted depth for these points, using

the model trained on an independent set of points. Re-

sults in Table 3 highlight the great potential of the SVR

models when using synthetic data. As can be seen there,

the fitting score achieved for all the trained models in-

dicates that they describe the data in a very precise

way.
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6 Experimental Results and Validation on the

real-world datasets

In this section, Method 1 and Method 2 are applied

to predict the depths of real world datasets and cor-

rect the refracted imagery, respectively, using the SVR

models trained on the synthetic datasets and the SVR

model trained on a real-world dataset (see 6.2). Ad-

ditionally, the real world data are corrected using the

3D space correction approaches presented in Dietrich

(2017) (Method 3) and in Woodget et al. (2015) (Method

4) and the image-based refraction correction method

described in Skarlatos and Agrafiotis (2018) (Method

5). Implementation details and results of these meth-

ods are originally presented in Agrafiotis et al. (2020),

however, it is considered useful to demonstrate the re-

sults also in this article, highlighting the advantages

offered by the use of the synthetic data.

6.1 Desrcription of Datasets and Processing

The real world data used for this purpose consist of

two shallow water areas in Cyprus; Amathounta and

Agia Napa, and two in Greece; Cyclades-1 and 2. All

the sites, represent typical examples of seabed and wa-

ter column characteristics in the Eastern Mediterranean

Sea. Both UAV data and true depth data are available

for these areas.

In Amathounta, the maximum depth is 5.57 m. A

Swinglet CAM fixed-wing UAV with a Canon IXUS

220HS camera with a focal length of 4.3 mm was used

for image acquisition, and a total of 182 images were ac-

quired, from an average flying height of 103 m. In Agia

Napa, the maximum depth is 14.8 m and the flight is

executed with the same system. In total, 383 images

were acquired, from an average flying height of 209 m.

For both the sites, LiDAR data are used for validation.

In Cyclades-1, the maximum depth is 6.9 m. A Phan-

tom 4 UAV with an FC330 camera with a focal length

of 3.61 mm is used for data acquisition. In total, 449 im-

ages were acquired from three different average flying

heights of 88 m, 70 m, and 35 m. Finally in Cyclades-2,

the maximum depth is 4.05 m. The same UAV was used

and in total, 203 images were acquired from 75 m and

33 m height. For those two test sites, topographic points

measured with a total station are used for validation.

A standard SfM-MVS approach is followed in order

to obtain the required data for applying the proposed

refraction correction methods, i.e. the interior and ex-

terior orientation of the cameras and the initial dense

point cloud. For the approaches presented here, Agisoft

Metashape is used. Available data and processing are

described in detail in Agrafiotis et al. (2019a,b, 2020).

6.2 Refraction Correction

Considering that all the models trained on the UAV-

borne synthetic data are similar (Fig. 6), only the trained

model over the 150 m [DTM1] dataset is used for cor-

recting the point clouds of the real world areas. To com-

pare the performance of this model with that of a model

trained on real world data, both Method 1 and 2 are

also applied using an SVR model trained on the Dekelia

dataset, described in detail in Agrafiotis et al. (2020).

The main aim here is to demonstrate the improved ac-

curacy offered by the synthetic data in the trained SVR

models and that these models have significant potential

of generalization for applications over different areas

and shallow waters. The investigation and evaluation

of the use of synthetic data is performed in both the

aforementioned methods in order to demonstrate the

increased accuracy offered for both the cases.

6.3 Comparative analysis of the results

Having available all the necessary data, the possible

improvements on the accuracy of the results achieved

when exploiting the models trained on the synthetic

data, are investigated and evaluated.

For evaluating the improvements using Method 1

the corrected depths of the point clouds are compared

with the true depths available for each dataset. For

Method 2, the evaluation of the improvements on the

corrected imagery is performed through the evaluation

of the SfM results achieved using the imagery. For this

method, the dense point cloud regeneration is not neces-

sary after the correction of the imagery since the dense

point cloud is already corrected by the intermediate

step of applying the first method and used for the im-

age correction. Also, there is no ground truth for the

exterior orientations of the cameras. As such, the sparse

point clouds of the updated SfM solutions are evaluated

to demonstrate the improvements. Indeed, in the lit-

erature, a well-established methodology for evaluating

SfM performance is to compare the sparse point cloud

to some ground truth with the same data representa-

tion (Bianco et al., 2018). For reasons of consistency,

the evaluation of the first method is also performed on

the sparse point clouds.

To this end, the comparison of the depths of the re-

spective point clouds with the LiDAR data is performed

for the Amathounta and Agia Napa test sites. For the

Cyclades-1 and Cyclades-2 test areas, comparisons are

performed using checkpoints measured with a geode-

tic total station on-site and acquired together with the

image data, since LiDAR data are not available.
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6.3.1 Quantitative Results and Evaluation

The results of the vertical differences among the true

depth point clouds of the four test areas and the re-

spective sparse point clouds resulted from the tested

refraction correction approaches are presented in Fig. 9

and Table 4.

In Fig. 9 (row I), it can be observed that the verti-

cal distances between the reference data and the orig-

inal (uncorrected) image-based point clouds increase

in proportion to the depth. Rows II, III, and IV il-

lustrate the vertical distances in relation to the depth

between the true and the sparse point clouds produced

by Method 4 and Method 3. In this method, the cor-

rected depths resulted from all the refraction angles are

given in III while the filtered corrected depths, calcu-

lated using a limited set of refraction angles, in this case

those less than 35o off-nadir, are given in IV. Row V

illustrates the vertical distances between the true and

the sparse point clouds produced by Method 1 trained

on the Dekelia dataset while row VI presents the same

distances, however when the SVR model is trained on

the 150 m [DTM1] dataset. All the above compared ap-

proaches are meant to correct the geometric effects of

refraction in the 3D space and specifically in the sparse

or dense point cloud.

Row VII illustrates the vertical distances in rela-

tion to the depth between the true and the sparse point

clouds produced by Method 5 while the VIII and the

IX row present the 2D histograms of the vertical dis-

tances between the true and the sparse point clouds

produced by the corrected imagery of Method 2, us-

ing the SVR models trained on the Dekelia and the

150 m [DTM1] datasets respectively. The latter three

compared approaches are correcting the geometric ef-

fects of refraction in the image space.

Fig. 9 reveals the improved performance of both of

the tested Method 1 and 2 for correcting the geometric

effects of refraction when the SVR model trained on

the synthetic data is used. A very important outcome

of this figure is that, the resulted sparse point cloud is

characterized by less noise in the elevations’ differences,

when the initial imagery is corrected. This is evident by

comparing the 2D histograms of Method 1 with the 2D

histograms resulted for all the methods that are applied

in the 3D point clouds directly. The 2D histograms re-

sulting from this image correction method are narrower

in the X axis, indicating less dispersion of apparent ele-

vations. This is even more evident when the SVR model

trained on the synthetic data is used (ninth row of Fig.

9), demonstrating another positive effect of the use of

the synthetic data for training. Table 4 presents the

results of all the tests performed.

Both in Fig. 9 and Table 4, a great improvement

in the depth accuracy of the sparse SfM point clouds

is achieved by both Method 1 and 2 when using the

synthetic data. As expected, when exploiting the SVR

model trained on the 150 m [DTM1] dataset, the calcu-

lated statistical indices are better, confirming the higher

performance of the model trained on the synthetic dataset

compared to the real world areas.

In more detail, when the model trained on the 150 m

[DTM1] dataset is used in Method 1, a large decrease in

the mean distances calculated from the true data is ob-

served; in Amathounta, reduced from 0.67 m to -0.04 m,

in Agia Napa from 1.71 m to 0.06 m, in Cyclades-1, from

0.32 m to -0.05 m, while in Cyclades-2, from 0.54 m to

-0.05 m too. Comparing with the results achieved by

the same method, but using the SVR model trained on

the Dekelia dataset, these are -0.09 m, -0.13 m, 0.02 m

and -0.01 m respectively. Although the Cyclades-1 and

Cyclades-2 datasets feature higher mean distances, it is

important to note that the standard deviation (σ) and

the RMSE are reduced for all the cases.

In the same context, when the model trained using

the 150 m [DTM1] dataset is used in Method 2, the

initial mean distance in Amathounta is reduced to -

0.04 m, in Agia Napa, to -0.04 m, in Cyclades-1, to 0 m,

while in Cyclades-2, to -0.05 m. Comparing with the

results achieved by the same method, when exploiting

the SVR model trained on the Dekelia dataset, these are

-0.19 m, -0.31 m, -0.02 m and -0.06 m respectively. Again

here, a great reduction is observed for the remaining

statistical indices (σ and RMSE).

Actually, the reduction when using Method 2 is larger

than previously and can be partially attributed to the

correction of the imagery instead of the correction of

the point clouds (Agrafiotis et al., 2020), since a de-

crease is apparent when the model trained on the Deke-

lia dataset is used too. However, a higher reduction can

be achieved using the model trained on the synthetic

dataset, proving the positive effect of using these mod-

els. This reduction also indicates the generation of point

clouds with reduced noise.

This is a very important advantage of Method 2, in-

dicating that when correcting the initial imagery from

refraction, SfM delivers more accurate and more reli-

able results with less noise in both the sparse and dense

point clouds. This is explained by the fact that the ge-

ometric effects of refraction in the images are affect-

ing feature matching to an important degree; match-

able key points are not matched together or they are

matched with the wrong key points, because due to the

refraction effect, each image is distorted in a different

way. This effect drives feature matching algorithms to



Title Suppressed Due to Excessive Length 15

Amathounta Agia Napa Cyclades-1 Cyclades-2
Uncorrected

Method 3

Method 4

Method 4 (filtered)

Method 1 (Dekelia)

Method 1 (Synth.)

Method 5
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Method 2 (Dekelia)

Method 2 (Synth.)

Fig. 9: The 2D histograms of the differences between the true and the uncorrected and corrected image-based

sparse point clouds derived from the SfM for Amathounta (column I), Agia Napa (column II), Cyclades-1 (column

III) and Cyclades-2 (column IV) test sites respectively. The red dashed lines represent the maximum allowable

TVU dictated by the IHO’s Special Order (S44) (IHO, 2020). ”Synth.” stands for synthetic data and specifically

the 150 m [DTM1] dataset.

Test Site

Amathounta Agia Napa Cyclades-1 Cyclades-2

Check points 1K 75K 23 34

Max/Min depth [m] 5.57/0.10 14.8/0.20 6.9/0.0 4.05/0.0

Point clouds from
different methods

Statistical Analysis [m]

x σ RMSEZ x σ RMSEZ x σ RMSEZ x σ RMSEZ

Uncorrected
images

0.67 2.19 2.28 1.71 1.18 2.08 0.32 0.10 0.33 0.54 0.29 0.62

Method 3 -0.27 0.40 0.49 0.63 1.02 0.98 -0.08 0.10 0.12 -0.23 0.26 0.34
Method 4 0.49 0.54 0.73 -1.55 1.49 1.75 0.38 0.25 0.46 -0.15 0.24 0.28
Method 4 (filt.) -0.22 0.40 0.45 0.43 0.72 0.84 -0.06 0.09 0.10 -0.20 -0.30 0.36
Method 1 (Dekelia) -0.09 0.18 0.28 -0.13 0.51 0.55 0.02 0.09 0.09 -0.01 0.21 0.21
Method 1 (Synth.) -0.04 0.13 0.14 0.06 0.41 0.42 -0.05 0.06 0.07 -0.05 0.12 0.13

Method 5 -0.39 0.88 0.96 -0.05 0.74 0.74 0.15 0.42 0.46 -0.28 0.36 0.46
Method 2 (Dekelia) -0.19 0.28 0.31 -0.04 0.37 0.38 -0.02 0.09 0.09 -0.06 0.14 0.15
Method 2 (Synth.) -0.04 0.12 0.13 -0.03 0.21 0.23 0.00 0.06 0.07 -0.05 0.06 0.09

Table 4: Quantitative evaluation results of the comparisons. x is the average distance of the point cloud from

the true values and σ is its standard deviation. Negative values suggest overestimation of the depth and positive

suggest underestimation. Values achieved using the synthetic data are highlighted in bold format. ”Synth.” stands

for synthetic data and specifically the 150 m [DTM1] dataset.

match points fulfilling the epipolar geometry only be-

cause of the refraction effect.

In all the cases, results include outlier points, such

as seagrass, that are not captured in the true depth

clouds for all the cases or are caused due to point cloud

noise again in areas with seagrass or poor texture.

Compared with the results derived from Method 3

and 4, Method 1 outperformed both. Method 2, com-

pared with the accuracy levels reached by Method 1,

managed to achieve slightly better accuracy in all the

test sites. However, Method 2, delivered better standard

deviations and RSMEsZ , especially when employed

SVR models are trained using the synthetic dataset.

This way, it is shown that their use facilitates an im-

provement not only of the accuracy but also of the qual-

ity of the generated point clouds by reducing the noise.
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Regarding the rest of the compared refraction cor-

rection approaches, both Method 3 and 4 are developed

for correcting the effects of refraction in very shallow

waters riverbeds and they seem to produce quite accu-

rate and reliable results in the shallower areas, espe-

cially when filtering is applied in Method 4.

To categorize the results according to IHO’s S44, the

95% TVU is calculated as 1.96×σ. Results suggest that

when the model trained on 150 m [DTM1] dataset is

used, Method 1 meets the TVU limits of: the Exclusive

Order in Cyclades-1, the Sepcial Order in Amathounta

and Cyclades-2, and the Order 2 in Agia Napa test

sites. Method 2 meets the TVU limits of: the Exclusive

Order both in Cyclades-1 and 2, the TVU limits of the

Special Order in Amathounta, and the TVU limits of

the Order 1a in Agia Napa. As with the synthetic data,

performed tests shown that Method 2 is qualified to

the maximum ZOC (IHO, 2019) level A1 for all the

real world test sites. Method 1, is qualified to A1 for all

the test sites, except Agia Napa, the deepest site, that

is qualified to A2.

7 Discussion

In this article the generation of synthetic DTMs and

of both UAV-borne and aircraft-borne aerial images of

clear water-covered areas is described. To the best of au-

thors knowledge, this is the first attempt to exploit syn-

thetic data for correcting the refraction effect on UAV

imagery and SfM-MVS derivatives.

The most important aim of this work is the exploita-

tion of synthetic data for training unbiased SVR mod-

els as in Agrafiotis et al. (2019a,b) facilitating the val-

idation in real world cases and increasing the accuracy

achieved compared to models trained in real world data.

To achieve this goal, four synthetic datasets with re-

fraction and four without, are generated and processed

accordingly.

Compared with the real world data, the advantage

of the synthetic data is the accuracy and the reliability

of the depth information. More importantly, when it

comes to seabed imaging, errors and limitations caused

by visibility restrictions due to the depth, as well as

errors introduced by the wavy surface are excluded,

delivering unaffected results. The mathematical func-

tion used to generate the DTMs led to independent

and objective results by eliminating errors transferred

to the training, validation and testing process by asyn-

chronous true data. Indeed, as in any supervised learn-

ing approach, the quality of the training data affects

the accuracy of the predicted models.

The performed experiments, produced a number of

important outcomes regarding the systematic errors and

the noise in the SfM-MVS elevations for both the non-

refracted and refracted datasets. In all the tests per-

formed using the non-refracted datasets, it is noticed

that the average elevation differences are increasing as

the flying height and the complexity of the DTM in-

creases. This is inline with reports in the literature

(Smith and Vericat, 2015; Nesbit and Hugenholtz, 2019).

Moreover, SfM-MVS processing underestimated the el-

evations of those datasets.

In the experiments performed using both the re-

fracted and non-refracted datasets, this underestima-

tion, which is almost equal to the GSD size, is accom-

panied by larger differences, which are not systematic

and they are scattered almost equally on either side of

the mean value, approximating the high-ordered Gaus-

sian distribution already reported and shown in Fig.

3. These effects, reported also in Smith and Vericat

(2015) and Nesbit and Hugenholtz (2019), are apparent

in most of the nadir image blocks and they are explain-

ing the calculated standard deviations (σ) in Table 2

and Table 3 since they are indicating that the noise

in the elevations of the point cloud are mainly intro-

duced by the SfM-MVS process. However, the use of

oblique images for seabed mapping applications is not

suggested since this would asymmetrically increase the

incidence angles and consequently the refraction and

the noise in the point clouds instead of reducing it.

This noise is not related to the proposed method and

cannot be avoided by any of the proposed approaches

presented in the literature, since it seems to be a fun-

damental feature of the SfM-MVS process and as ex-

pected, it is more intense when refraction is added to

the images (Fig. 8). However, this noise is limited to a

mere 4.6% of the compared points. The remaining noise

due to refraction is reduced when correcting the refrac-

tion in image space, using Method 2 (Agrafiotis et al.,

2020) and especially when the SVR model trained on

the synthetic data is used.

Experimental results over the four synthetic test ar-

eas which are characterized by different flying heights,

different depths, and different seabed anaglyph, along

with the quantitative validation performed, indicated

the high potential of the SVR models trained on these

synthetic data, even if the image acquisition altitude

differed by 2650 m. Additionally, results over four differ-

ent real-world test areas suggested that the SVR model

trained on the synthetic dataset outperforms the mod-

els trained on the real-world datasets. This is expected

due to the increased quality of the synthetic training

data, compared with the real-world data.

The notable performance of the SVR models trained

on the synthetic datasets for correcting the refraction

effect on the real world ones, demonstrated the cor-
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rect modeling of the refraction effect in Skarlatos and

Agrafiotis (2018) and Agrafiotis et al. (2020) too. This

model is inverted for adding the refraction on the syn-

thetic images.

8 Conclusions

The synthetic data, simulating UAV and aircraft-borne

cameras with flying altitudes ranging from 150 m to

2800 m, enabled the training of accurate linear SVR

models for the correction of the geometric effects of re-

fraction and specifically for predicting accurate depths,

having knowledge only of the apparent ones. This ap-

proach, addressed a number of challenges related to in-

evitable random measurement noise in the training data

and the asynchronous image and true data, delivering

generalized models.

It is shown that when the models trained on the

UAV datasets are applied on different UAV synthetic

datasets, results are satisfying IHO’s Exclusive or Spe-

cial Order TVU limits. It is also shown that the same

models can be used to accurately correct the effects

of refraction on image-based 3D point clouds resulted

by an aircraft-borne sensor, flying more than 2500 m

higher, satisfying IHO’s Order 1a TVU. However, it is

important that when the models trained on the aircraft-

borne sensor are used to correct the refraction on the

UAV-borne datasets, the accuracy is doubled, satisfying

IHO’s Special Order TVU. These minor differences in

the UAV-borne and aircraft-borne models, are subject

of further research, including more synthetic aircraft-

borne datasets and thorough investigation of the effects

of images depicting both emerged and submerged areas
on the SfM, as preliminary reported in this article.

By exploiting the synthetic data, Methods 1 and 2

managed to achieve impressive results over real world

test sites, reducing the mean distances between the true

and the apparent depths in the range of 0 m to 0.05 m,

the standard deviation in the range of 0.06 m to 0.24 m

and the RMSEZ in the range of 0.07 m to 0.24 m.

Also, they met IHO’s Special Order TVU in the ma-

jority of the cases. Exclusive Order’s TVU is also met

in Cyclades-1 and 2 test sites. As a typical example, it

is reported that the initial mean difference of 5.5 m, i.e.

the 36.7% of the true depth, between the uncorrected

and the true depths at the depth of 15 m, is reduced to

the range of -0.05 m to 0.05 m, i.e. the 0.33% of the true

depth in the vast majority of the points.
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